Journal Articles

|Google Scholar |ResearchGate |ORCID |Web of Science |
|2024 |2023 |2022 |2021 |2020 |2019|2018|2017|2016 |2015|2014|before 2014|

Selected

  1. Predicted operando Polymerization at Lithium Anode via Boron Insertion
    Liu Y; Yu PP; Sun QT; Wu Y; Xie M; Yang H; Cheng T*; Goddard WA;
    ACS Energy Lett. 2021, 6, 2320.
  2. Effects of High and Low Salt Concentration in Electrolytes at Lithium−Metal Anode Surfaces using DFT-ReaxFF Hybrid Molecular Dynamics Method
    Liu Y; Sun QT; Yu PP; Wu Y; Xu L; Yang H; Xie M; Cheng T*; Goddard III WA;
    J. Phys. Chem. Lett. 2021, 12, 2922–2929.
  3. Reaction Intermediates During Operando Electrocatalysis Identified from Full Solvent Quantum Mechanics Molecular Dynamics
    Cheng T; Fortunelli A; Goddard WA*;
    Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 7718-7722.
  4. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH.
    Cheng T; Wang L; Boris MV; Goddard WA*;
    J. Am. Chem. Soc. 2018, 140, 7787-7790.
    (J. Am. Chem. Soc. Spotlights)
  5. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance
    Cheng T; Xiao H; Goddard WA*;
    J. Am. Chem. Soc. 2017, 139, 11642-11645.

Back to top

2024

  1. Electrochemically activated Rh-O-Ni interfacial sites at Rh-Ni,P electrocatalyst for efficient alkaline hydrogen evolution reaction
    Peng C; Li JY; Shi LX; Wang MY; Wang WH; Cheng T; Yang PZ*; Yang H*; Wu KL*;
    Rare Metals 2024, , ASAP.
  2. Edge sites dominate the hydrogen evolution reaction on platinum nanocatalysts
    Huang ZH#; Cheng T#; Shah AH; Zhong GY; Wan CZ; Wang PQ; Ding MN; Huang J; Wan Z; Wang SB; Cai J; Peng BS; Liu HT; Huang Y*; Goddard WA*; Duan XF*;
    Nat. Catal. 2024, , ASAP.
  3. Sulfur-tuned main-group Sb−N−C catalysts for selective 2-electron and 4-electron oxygen reduction
    Mei M; Yang H; Cheng T*; Fei HL*;
    Adv. Mater. 2024, , ASAP.
  4. Conversion mechanism of sulfur in room-temperature sodium-sulfur battery with carbonate-based electrolyte
    Jin F; Wang B*; Wang RJ; Liu Y; Zhang N; Bao CY; Wang DL*; Cheng T*; Liu HK; Dou SX*;
    Energy Storage Mater. 2024, , ASAP.
  5. Tailoring Localized Electrolyte via a Dual-Functional Protein Membrane Toward Stable Zn Anodes
    Guo WY; Xu L; Su YW; Tian ZN; Qiao CP; Zou YH; Chen ZA; Yang XZ; Cheng T*; Sun JY*;
    ACS Nano 2024, , ASAP.
  6. Efficient Circularly Polarized Luminescence and Bright White Emission from Hybrid Indium-based Perovskites via Achiral Building Blocks
    Du LP; Zhou QW; He QQ; Liu Y; Lv HJ; Shen YQ; Sheng LL; Cheng T; Yang H*; Fang Y*; Ning WH*;
    Adv. Funct. Mater. 2024, , ASAP.
  7. Interfacial Polymerization Mechanisms Assisted Flame Retardancy Process of a Low-Flammable Electrolytes on Lithium Anode
    Ma BY; Liu Y*; Sun QT; Yang H; Xie M; Cheng T*;
    J. Colloid Interface Sci. 2024, 660, 545-554.
  8. Nitrogen contained Rhodium Nanosheet Catalysts for Efficient Hydrazine Oxidation Reaction
    Shi J#; Sun QT#; Chen JX; Zhu WX; Cheng T; Ma MJ; Fan ZL*; Yang H*; Liao F*; Shao MW*; Kang ZH*;
    Appl. Catal. B 2024, 343, 123561.
  9. Layered Quasi-Nevskite Metastable-Phase Cobalt Oxide Accelerates Alkaline Oxygen Evolution Reaction Kinetics
    Fan ZL#; Sun QT#; Yang H; Zhu WX; Liao F; Shao Q; Zhang TY; Huang H; Cheng T; Liu Y*; Shao MW*; Shao MH*; Kang ZH*;
    ACS Nano 2024, , ASAP.

Back to top

2023

  1. In situ Imaging of the Atomic Phase Transition Dynamics in Metal Halide Perovskites
    Ma MM; Zhang XL; Chen X; Xiong H; Xu L; Cheng T; Yuan JY; Wei F; Shen BY*;
    Nat. Commun. 2023, 14, 7142.
  2. A Holistic Additive Protocol Steers Dendrite-Free Zn(101) Orientational Electrodeposition
    Su YW#; Xu L#; Sun YJ#; Guo WY; Yang XZ; Zou YH; Ding M; Zhang QH; Qiao CP; Dou SX; Cheng T*; Sun JY*;
    Small 2023, , ASAP.
  3. Understanding steric hindrance effect of solvent molecule in localized high-concentration electrolyte for lithium metal batteries
    Li XP#; Pan YX#; Liu Y#; Jie YL; Chen SQ; Wang SY; He ZX; Ren XD; Cheng T*; Cao RG*; Jiao SH*;
    Carbon Neutrality 2023, 2, 34.
  4. Unraveling the Solvent Effect on Solid-Electrolyte Interphase Formation for Sodium Metal Batteries
    Wang SY; Weng ST; Li XP; Liu Y; Huang XL; Jie YL; Pan YX; Zhou HM; Jiao SH; Li Q; Wang XF*; Cheng T*; Cao RG*; Xu DS*;
    Angew. Chem. Int. Ed. 2023, 62, e202313447.
  5. Atomically unraveling the structural evolution of surfaces and interfaces in metal halide perovskite quantum dots
    Ma MM#; Zhang XL#; Xu L#; Chen X; Wang L; Cheng T; Wei F; Yuan JY*; Shen BY*;
    Adv. Mater. 2023, 35, 2300653.
  6. Efficient CO Electroreduction to Methanol by CuRh Alloys with Isolated Rh Sites
    Zhang JB; Yu PP; Peng C; Lv XM; Liu ZZ; Cheng T*; Zheng GF*;
    ACS Catal. 2023, 13, 7170–7177.
  7. Impact of Lithium Nitrate Additives on the Solid Electrolyte Interphase in Lithium Metal Batteries
    Wang MW; Sun QT; Liu Y*; Yan ZA; Xu QY; Wu YC; Cheng T*;
    Chinese J. Struc. Chem. 2023, , ASAP.
  8. Fine-Tuned Molecular Design toward a Stable Solid Electrolyte Interphase on a Lithium Metal Anode from in silico Simulation
    Ma BY; Liu Y*; Sun QT; Yu PP; Xu L; Yang H; Xie M; Cheng T*;
    Mater. Today Chem. 2023, 33, 101735.
  9. Elucidating Solid Electrolyte Interphase Formation in Sodium-Based Batteries: Key Reductive Reactions and Inorganic Composition
    Liu Y; Sun QT; Yue BT; Zhang YY; Cheng T*;
    J. Mater. Chem. A 2023, 11, 14640-14645.
  10. Regulating the Inner Helmholtz Plane with a High Donor Additive for Efficient Anode Reversibility in Aqueous Zn-Ion Batteries
    Luo JR; Xu L; Zhou YJ; Yan TR; Shao YY; Yang DZ; Zhang L; Xia Z; Wang TH; Zhang L; Cheng T*; Shao YL*;
    Angew. Chem., Int. Ed. 2023, 62, e202302302.
  11. Precisely Optimizing Polysulfides Adsorption and Conversion by Local Coordination Engineering for High-Performance Li-S Batteries
    Yuan C; Song XC; Zeng P; Liu GL; Zhou SH; Zhao G; Li HT; Yan TR; Mao J; Yang H; Cheng T; Wu JP*; Zhang L*;
    Nano Energy 2023, 110, 108353.
  12. Programmable Synthesis of High-Entropy Nanoalloys for Efficient Ethanol Oxidation Reaction
    Li MF#; Huang CM#; Yang H#; Wang Y; Song XC; Cheng T; Jiang JT; Lu YF; Liu MC; Yuan Q; Ye ZZ; Hu Z*; Huang HW*;
    ACS Nano 2023, 17, 13659–13671.
  13. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide
    Zhu WX#; Song XC#; Liao F; Huang H; Feng K; Shao Q; Zhou YJ; Ma MJ; Wu J; Yang H; Yang HW; Wang M; Shi J; Zhong J; Cheng T*; Shao MW*; Liu Y*; Kang ZH*;
    Nat. Commun. 2023, 14, 5365.
  14. Far-from-equilibrium electrosynthesis ramifies high-entropy alloy for alkaline hydrogen evolution
    Wang YN#; Yang H#; Zhang Z; Meng XY; Cheng T; Qin GW; Li S*;
    J. Mater. Sci. Technol. 2023, 166, 234-240.
  15. The operation active sites of O2 reduction to H2O2 over ZnO
    Zhou YJ; Xu L; Wu J; Zhu WX; He TW; Yang H; Huang H; Cheng T*; Liu Y*; Kang ZH*;
    Energy Environ. Sci. 2023, 16, 3526-3533.
  16. Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media
    Zhang Y; Wang MW; Zhu WX; Fang MM; Ma MJ; Liao F*; Yang H*; Cheng T; Pao CW; Chang YC; Hu ZW; Shao Q*; Shao MW*; Kang ZH*;
    Angew. Chem., Int. Ed. 2023, 135, e202218924.
  17. Origin of dendrite-free lithium deposition in concentrated electrolytes
    Chen YW#; Li MH#; Liu Y#; Jie YL; Li WX; Huang FY; Li XP; He ZX; Ren XD; Chen YH; Meng XH; Cheng T*; Gu M*; Jiao SH*; Cao RG*;
    Nat. Commun. 2023, 14, 2655.
  18. Preferential Decomposition of the Major Anion in a Dual-Salt Electrolyte Facilitates the Formation of Organic-Inorganic Composite Solid Electrolyte Interphase
    Qi F; Yu PP; Zhou QW; Liu Y*; Sun QT; Ma BY; Ren XG*; Cheng T*;
    J. Chem. Phys. 2023, 158, 104704.
  19. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries
    Weng ST; Zhang X; Yang GJ; Zhang SM; Ma BY; Liu QY; Liu Y; Peng CX; Chen HX; Yu HL; Fan XL; Cheng T; Chen LQ; Li YJ*; Wang ZX*; Wang XF*;
    Nat. Commun. 2023, 14, 4474.
  20. Lattice and Surface Engineering of Ruthenium Nanostructures for Enhanced Hydrogen Oxidation Catalysis
    Dong YT#; Sun QT#; Zhan CH; Zhang JT; Yang H; Cheng T; Xu Y*; Hu ZW; Pao CW; Geng HB; Huang XQ*;
    Adv. Funct. Mater. 2023, 33, 2210328.
  21. Nanoconfined molecular catalysts in integrated gas diffusion electrodes for high-current-density CO2 electroreduction
    Lv XZ; Liu Q; Yang H; Wang JH; Wu XJ; Li XT; Qi ZF; Yan JH; Wu AJ*; Cheng T*; Wu HB*;
    Adv. Funct. Mater. 2023, 33, 2301334.
  22. Pre-activation of CO2 at Cobalt Phthalocyanine-Mg(OH)2 Interface for Enhanced Turnover Rate
    FL Lyu#; BY Ma#; XL Xie; DQ Song; YB Lian; H Yang; W Hua; Sun H; J Zhong; Z Deng; Cheng T*; Y Peng*;
    Adv. Funct. Mater. 2023, 33, 2214609.
  23. The lattice strain dominated catalytic activity in single-metal nanosheets
    Wang M#; Sun QT#; Fan ZL#; Zhu WX; Liao F; Wu J; Zhou YJ; Yang H; Huang H; Ma MJ; Cheng T*; Shao Q*; Shao MW*; kang ZH*;
    J. Mater. Chem. A 2023, 11, 4037-4044.
  24. Molecular-Crowding Effect Mimicking Cold-Resistant Plants to Stabilize the Zinc Anode with Wider Service Temperature Range
    Ren HZ; Li S; Wang B*; Zhang YY; Wang T; Lv Q; Zhang XY; Wang L; Han X; Jin F; Bao CY; Yan PF; Zhang N; Wang DL*; Cheng T*; Liu HK; Dou SX;
    Adv. Mater. 2023, 35, 2208237.
  25. Coherent Hexagonal Platinum Skin on Nickel Nanocrystals for Enhanced Hydrogen Evolution Activity
    Liu K#; Yang H#; Jiang YL#; Liu ZJ; Zhang SM; Zhang ZX; Qiao Z; Lu YM; Cheng T*; Terasaki O; Zhang Q*; Gao CB*;
    Nat. Commun. 2023, 14, 2424.
  26. Atomistic Mechanisms for catalytic transformations of NO to NH3, N2O, and N2 by Pd
    Yu PP; Wu Y; Yang H; Xie M; Goddard WA*; Cheng T*;
    Chin. J. Chem. Phys 2023, 36, 94-102.

Back to top

2022

  1. Machine Learning Predicts the X-ray Photoelectron Spectroscopy of the Solid Electrolyte Interface of Lithium Metal Battery
    Sun QT; Xiang Y; Liu Y; Xu L; Leng TL; Ye YF; Fortunelli A*; Goddard WA*; Cheng T*;
    J. Phys. Chem. Lett. 2022, 13, 8047–8054.
  2. DFT-ReaxFF Hybrid Molecular Dynamics Investigation of the Decomposition Effects of Localized High-Concentration Electrolyte in Lithium Metal Batteries: LiFSI/DME/TFEO
    Lu YM; Sun QT; Liu Y*; Yu PP; Zhang YY; Lu JC; Huang HC; Yang H*; Cheng T*;
    Phys. Chem. Chem. Phys. 2022, 24, 18684-18690.
  3. Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes
    Li XT#; Liu Q#; Wang JH#; Meng DC; Shu YJ; Lv XZ; Zhao B; Yang H; Cheng T; Gao QS; Li LS; Wu HB*;
    Chem 2022, 8, 2148-2162.
  4. Unveiling the Local Structure and Electronic Properties of PdBi Surface Alloy for Selective Hydrogenation of Propyne
    Wang XC#; Chu MY#; Wang MW#; Zhong QX; Chen JT; Wang ZQ; Cao MH; Yang H; Cheng T; Chen JX*; Sham TK*; Zhang Q*;
    ACS Nano 2022, 16, 16869-16879.
  5. Origin of the exceptional selectivity of NaA zeolite for the radioactive isotope of 90Sr2+
    Hao WF#; Yan NN#; Xie M#; Yan XJ; Guo XL; Bai P; Guo P; Cheng T*; Yan WF*;
    Inorg. Chem. Front. 2022, 9, 6258-6270.
  6. Promoting Mechanistic Understanding of Lithium Deposition and Solid-Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives
    Xu YL#; Dong K#; Jie YL#; Adelhelm P; Chen YW; Xu L; Yu PP; Kim JH; Kochovski Z; Yu ZL; Li WX; Lebeau J; Yang SH; Cao RG; Jiao SH*; Cheng T*; Manke I*; Lu Y*;
    Adv. Energy Mater. 2022, 12, 2200398.
  7. Multiscale simulation of a solid electrolyte interphase
    Yu PP; Xu L; Ma BY; Sun QT; Yang H; Liu Y*; Cheng T*;
    Energy Storage Science and Technology 2022, 11, 921-928.
    多尺度模拟研究固体电解质界面
  8. Stimulating the Pre-Catalyst Redox Reaction and the Proton–Electron Transfer Process of Cobalt Phthalocyanine for CO2 Electroreduction
    Li HY; Wei J; Zhu XY; Gan L; Cheng T; Li J*;
    J. Phys. Chem. C 2022, 126, 9665–9672.
  9. Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling
    Wang PT#; Yang H#; Tang C; Wu Y; Zheng Y; Cheng T; Davey K; Huang XQ*; Qiao SZ*;
    Nat. Commun. 2022, 13, 3754.
  10. Determining the hydronium pKα at platinum surfaces and the effect on pH-dependent hydrogen evolution reaction kinetics
    Zhong GY#; Cheng T#; Shah AH; Wan CZ; Huang ZH; Wang SB; Leng TL; Huang Y*; Goddard WA*; Duan Xiangfeng*;
    Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2208187119.
    (Zhong GY and Cheng T contributed equally)
  11. Formation of Linear Oligomers in Solid Electrolyte Interphase via Two-Electron Reduction of Ethylene Carbonate
    Liu Y; Wu Y; Sun QT; Ma BY; Yu PP; Xu L; Xie M; Yang H; Cheng T*;
    Adv. Theory Simul. 2022, 5, 2100612.
  12. Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting
    Wang J#; Yang H#; Li F#; Li LG; Wu JB; Liu SH; Cheng T; Xu Y*; Shao Q; Huang XQ*;
    Sci. Adv. 2022, 8, eabl9271.
  13. TiH2 Nanodots Exfoliated via Facile Sonication as Bifunctional Electrocatalysts for Li–S Batteries
    Yan TR; Wu Y; Gong F; Cheng C; Yang H; Mao J; Dai KH; Cheng L*; Cheng T*; Zhang L*;
    ACS Appl. Mater. Interfaces 2022, 14, 6937–6944.
  14. Harmonizing Graphene Laminate Spacing and Zinc-Ion Solvated Structure toward Efficient Compact Capacitive Charge Storage
    Luo JR#; Xu L#; Liu HM; Wang YS; Wang Q; Shao YY; Wang ML; Yang DZ; Li S; Zhang L; Xia Z; Cheng T*; Shao YL*;
    Adv. Funct. Mater 2022, 32, 2112151.
  15. Multiscale Simulation of Solid Electrolyte Interface Formation in Fluorinated Diluted Electrolytes with Lithium Anodes
    Yu PP#; Sun QT#; Liu Y; Ma BY; Yang H; Xie M; Cheng T*;
    ACS Appl. Mater. Interfaces 2022, 14, 7972–7979.
  16. From n-alkane to polyacetylene on Cu (110): Linkage modulation in Chain Growth
    Hao ZM; Zhang JJ; Xie M; Li XC; Wang LN; Liu Y; Niu KF; Wang JB; Song LY; Cheng T; Zhang HM; Chi LF*;
    Sci. China Chem. 2022, 65, 733–739.
  17. The exclusive surface and electronic effects of Ni on promoting the activity of Pt towards alkaline hydrogen oxidation
    Wang KC#; Yang H#; Zhang JT; Ren GM; Cheng T; Xu Y*; Huang XQ*;
    Nano Res. 2022, 15, 5865-5872.
  18. Ligand-Mediated Self-Terminating Growth of Single-Atom Pt on Au Nanocrystals for Improved Formic Acid Oxidation Activity
    Liu MX#; Liu ZJ#; Xie M; Zhang ZX; Zhang SM; Cheng T*; Gao CB*;
    Adv. Energy Mater. 2022, 12, 2103195.
  19. Rh/RhOx nanosheets as pH-universal bifunctional catalysts for hydrazine oxidation and hydrogen evolution reactions
    Yang JJ#; Xu L#; Zhua WX; Xie M; Liao F*; Cheng T*; Kang ZH; Shao MW*;
    J. Mater. Chem. A 2022, 10, 1891-1898.
  20. Reduction Mechanism of Solid Electrolyte Interphase Formation on Lithium Metal Anode: Fluorine-rich Electrolyte
    Wu Y; Sun QT; Liu Y; Yu PP; Ma BY; Yang H; Xie M; Cheng T*;
    J. Electrochem. Soc. 2022, 169, 010503.
  21. In situ formation of circular and branched oligomers in a localized high concentration electrolyte at the lithium-metal solid electrolyte interphase: a hybrid ab initio and reactive molecular dynamics study
    Liu Y; Sun QT; Yu PP; Ma BY; Yang H; Zhang JY; Xie M; Cheng T*;
    J. Mater. Chem. A 2022, 10, 632-639.
  22. Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution
    Bai YK#; Wu Y#; Zhou XC; Ye YF; Nie KQ; Wang JO; Xie M; Zhang ZX; Liu ZJ; Cheng T*; Gao CB*;
    Nat. Commun. 2022, 13, 6094.
  23. Molecular Understanding of Interphase Formation via Operando Polymerization on Lithium Metal Anode
    Jie YL#; Xu YL#; Chen YW#; Xie M#; Liu Y; Huang FY; Kochovski Z; Lei ZW; Zheng L; Song PD; Hu CS; Qi ZM; Li XP; Wang SY; Shen YB; Chen LW; You YZ; Ren XD; Goddard WA; Cao RG; Lu Y*; Cheng T*; Xu K*; Jiao SH*;
    Cell Reports Physical Science 2022, 3, 101057.
  24. Au-activated N motifs in Non-coherent Cupric Porphyrin Metal Organic Frameworks for Promoting and Stabilizing Ethylene Production
    Xie XL#; Zhang X#; Xie M#; Xiong LK; Sun H; Lu YT; Mu QQ; Rummeli MH; Xu JB; Li S; Zhong J; Deng Z; Ma BY; Cheng T*; Goddard WA*; Peng Y*;
    Nat. Commun. 2022, 13, 63.
  25. Self-supported hierarchical crystalline carbon nitride arrays with triazine-heptazine heterojunctions for highly efficient photoredox catalysis
    Sun ZZ; Dong HZ; Yuan Q; Tan YY; Wang W; Jiang YB; Wan JY; Wen JW; Yang JJ*; He JQ; Cheng T; Huang LM*;
    Chem. Eng. Sci. 2022, 435, 134865.
  26. In-silico Screening the Nitrogen Reduction Reaction on Single-Atom Electrocatalysts Anchored on MoS2
    Xu L; Xie M; Yang H; Yu PP; Ma BY; Cheng T*; Goddard WA*;
    Top. Catal. 2022, 65, 234–241.
  27. Assembling covalent organic framework membranes with superior ion exchange capacity
    Wang XY#; Shi BB#; Yang H; Guan JY; Xu L; Fan CY; You XD; Wang YN; Zhang Z; Wu H; Cheng T; Zhang RN*; Jiang ZY*;
    Nat. Commun. 2022, 13, 1020.
  28. Boosting hydrogen production with ultralow working voltage by selenium vacancy-enhanced ultrafine platinum-nickel nanowires
    Jin Y#; Zhang Z#; Yang H*; Wang PT; Shen CQ; Cheng T; Huang XQ*; Shao Q*;
    SmartMat 2022, 3, 130-141.
  29. Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid
    Wang J#; Cheng C#; Yuan Q#; Yang H; Meng FP; Zhang QH; Gu L; Cao JL; Li LG; Haw SC; Shao Q*; Zhang L; Cheng T; Jiao F; Huang XQ*;
    Chem 2022, 8, 1673-1687.

Back to top

2021

  1. Hofmann-Type Metal–Organic Framework Nanosheets for Oxygen Evolution
    Wang TT#; Wu Y#; Han Y; Xu PW; Pang YJ; Feng XZ; Yang H*; Ji WJ*; Cheng T;
    ACS Appl. Nano Mater. 2021, 4, 14161–14168.
  2. Facet-selective deposition of ultrathin Al2O3 on copper nanocrystals for highly stable CO2 electroreduction to ethylene
    Li H#; Yu PP#; Lei RB#; Yang FP; Wen P; Ma X; Zeng GS; Guo JH; Toma FM; Qiu YJ; Geyer SM; Wang XW; Cheng T*; Drisdell W*;
    Angew. Chem. Int. Ed. 2021, 60, 24838-24843.
  3. Anomalous Size Effect of Pt Ultrathin Nanowires on Oxygen Reduction Reaction
    Yao ZY#; Yuan YL#; Cheng T#; Gao L#; Sun TL; Lu YF; Zhou YG; Galindo PL; Yang ZL; Xu L; Yang H; Huang HW*;
    Nano Lett. 2021, 21, 9354–9360.
  4. Multi-Scale Simulation Revealing the Decomposition Mechanism of Electrolyte on Lithium Metal Electrode
    Zhang YY; Liu Y; Lu YM; Yu PP; Du WX; Ma BY; Xie M; Yang H; Cheng T*;
    J. Electrochem. 2021, 28, 2105181.
  5. Reaction mechanism on Ni-C2-NS single-atom catalysis for the efficient CO2 reduction reaction
    Yuan Q; Li YY*; Yu PP; Ma BY; Xu L; Sun QT; Yang H*; Xie M*; Cheng T*;
    J. Exp. Nanosci. 2021, 16, 256-265.
  6. Predicted operando Polymerization at Lithium Anode via Boron Insertion
    Liu Y; Yu PP; Sun QT; Wu Y; Xie M; Yang H; Cheng T*; Goddard WA;
    ACS Energy Lett. 2021, 6, 2320-2327.
  7. Core-shell nanoparticles with tensile strain enable highly efficient electrochemical ethanol oxidation
    Liu MX#; Xie M#; Jiang YL; Liu ZJ; Lu YM; Zhang SM; Zhang ZX; Wang XX; Liu K; Zhang Q; Cheng T*; Gao CB*;
    J. Mater. Chem. A 2021, 9, 15373-15380.
  8. Graphitization of low-density amorphous carbon for electrocatalysis electrodes from ReaxFF reactive dynamics
    Hossain MD; Zhang Q; Cheng T; Goddard WA*; Luo ZT*;
    Carbon 2021, 183, 940-947.
  9. Bimetallic PdAu Nanoframes for Electrochemical H2O2 Production in Acids
    Zhao X#; Yang H#; Xu J; Cheng T; Li YG*;
    ACS Mater. Lett. 2021, 3, 996-1002.
  10. The inorganic cation-tailored “trapdoor” effect of silicoaluminophosphate zeolite for highly selective CO2 separation
    Wang XH#; Yan NN#; Xie M#; Liu PX; Bai P; Su HP; Wang BY; Wang YZ; Li LB; Cheng T; Guo P*; Yan WF*; Yu JH*;
    Chem. Sci. 2021, 12, 8803-8810.
  11. Ultrathin Pt-Cu-Ni Ternary Alloy Nanowires with Multimetallic Interplay for Boosted Methanol Oxidation Activity
    Zhang ZX#; Xie M#; Liu ZJ; Lu YM; Zhang SM; Liu MX; Liu Kai; Cheng T*; Gao CB*;
    ACS Appl. Energy Mater. 2021, 4, 6824-6832.
  12. Insights into the pH-dependent Behavior of N-Doped Carbons for the Oxygen Reduction Reaction by First-Principles Calculations
    Chen MP; Ping Y*; Li Y*; Cheng T*;
    J. Phys. Chem. C 2021, 125, 26429–26436.
  13. Approaching 100% Selectivity at Low Potential on Ag for Electrochemical CO2 Reduction to CO Using a Surface Additive
    Buckley A#; Cheng T#; Oh MH; Su GM; Garrison J; Utan SW; Zhu CH; Toste FD*; Goddard III WA*; Toma FM*;
    ACS Catal. 2021, 11, 9034-9042.
  14. Sulfur-doped Graphene Anchoring of Ultrafine Au25 Nanoclusters for Electrocatalysis
    Li MF#; Zhang B#; Cheng T; Yu SM; Louisia S; Chen CB; Chen SP; Cestellos-Blanco S; Goddard WA; Yang PD*;
    Nano Res. 2021, 14, 3509–3513.
  15. Pathway of in situ Polymerization of 1,3-dioxolane in LiPF6 Electrolyte on Li Metal Anode
    Xie M; Wu Y; Liu Y; Yu PP; Jia R; Ye YF; Goddard WA*; Cheng T*;
    Mater. Today Energy 2021, 21, 100730.
  16. Predictions of Chemical Shifts for Reactive Intermediates in CO2 Reduction under operando Conditions
    Yang H#; Negreiros FR#; Sun QT; Xie M; Sementa L; Stener M; Ye YF; Fortunelli A*; Goddard III WA*; Cheng T*;
    ACS Appl. Mater. Interfaces 2021, 13, 31554-31560.
  17. Effects of High and Low Salt Concentrations in Electrolytes at Lithium–Metal Anode Surfaces Using DFT-ReaxFF Hybrid Molecular Dynamics Method
    Liu Y; Sun QT; Yu PP; Wu Y; Xu L; Yang H; Xie M; Cheng T*; Goddard III WA;
    J. Phys. Chem. Lett. 2021, 12, 2922–2929.
  18. The DFT-ReaxFF Hybrid Reactive Dynamics Method with Application to the Reductive Decomposition Reaction of the TFSI and DOL Electrolyte at a Lithium–Metal Anode Surface
    Liu Y; Yu PP; Wu Y; Yang H; Xie M; Huai LY; Goddard WA*; Cheng T*;
    J. Phys. Chem. Lett. 2021, 12, 1300-1306.
  19. Autobifunctional Mechanism of Jagged Pt Nanowires for Hydrogen Evolution Kinetics via End-to-End Simulation
    Gu GH; Lim J; Wan CZ; Cheng T; Pu HT; Kim S; Noh J; Choi C; Kim J; Goddard WA*; Duan XF*; Jung YS*;
    J. Am. Chem. Soc. 2021, 143, 5355–5363.
  20. Selective CO2 Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface
    Wang JC; Cheng T; Fenwick AQ; Baroud TN; Rosas-Hernández A; Ko JH; Gan Q; Goddard WA*; Grubbs RH*;
    J. Am. Chem. Soc. 2021, 143, 2857–2865.
  21. Trifluorinated Keto–Enol Tautomeric Switch in Probing Domain Rotation of a G Protein-Coupled Receptor
    Wang XD; Zhao WJ; Al-Abdul-Wahid S; Lu YM; Cheng T; Madsen JJ; Ye LB*;
    Bioconjugate Chem. 2021, 32, 99-105.
  22. Synergized Cu/Pb Core/Shell Electrocatalyst for High-Efficiency CO2 Reduction to C2+ Liquids
    Wang PT#; Yang H#; Xu Y#; Huang XQ*; Wang J; Zhong M; Cheng T; Shao Q*;
    ACS Nano 2021, 15, 1039–1047.
  23. Efficient Direct H2O2 Synthesis Enabled by PdPb Nanorings via Inhibiting the O−O Bond Cleavage in O2 and H2O2
    Cao KL#; Yang H#; Bai SX; Xu Y*; Yang CY; Wu Y; Xie M; Cheng T; Shao Q; Huang XQ*;
    ACS Catal. 2021, 11, 1106–1118.
  24. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis
    Wang M; Yang H; Shi JN; Chen YF; Zhou Y; Wang LG; Di SJ; Zhao X; Zhong J; Cheng T; Zhou W; Li YG*;
    Angew. Chem. Int. Ed. 2021, 60, 5771-5777.
  25. Fastening Brˉ ions at Copper-Molecule Interface Enables Highly Efficient Electroreduction of CO2 to Ethanol
    Wang JH#; Yang H#; Liu QQ; Liu Q; Li XT; Lv XZ; Cheng T*; Wu HB*;
    ACS Energy Lett. 2021, 6, 437–444.
  26. Bioinspired Activation of N2 on Asymmetrical Coordinated Fe grafted 1T MoS2 at Room Temperature
    Guo JJ; Wang MY; Xu L; Li XM; Iqbal A; Sterbinsky GE; Yang H; Xie M; Zai JT*; Feng ZX*; Cheng T*; Qian XF;
    Chin. J. Chem. 2021, 39, 1898-1904.
  27. London Dispersion Corrections to Density Functional Theory for Transition Metals Based on Fitting to Experimental Temperature-Programmed Desorption of Benzene Monolayers
    Yang H; Cheng T*; Goddard WA*;
    J. Phys. Chem. Lett 2021, 12, 73–79.
  28. Theoretical Research on the Electroreduction of Carbon Dioxide
    Yuan Q; Yang H; Xie M; Cheng T*;
    Acta Phys. -Chim. Sin. 2021, 37, 2010040.
  29. Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction
    Bai HP; Cheng T; Li SY; Zhou ZY; Yang H; Li J; Xie M; Ye JY; Ji YJ; Li YY; Zhou ZY; Sun SG; Zhang Bo*; Peng HS*;
    Sci. Bull 2021, 66, 62-68.

Back to top

2020

  1. Compressed Intermetallic PdCu for Enhanced Electrocatalysis
    Flores Espinosa MM; Cheng T; Xu MJ; Abatemarco L; Choi C; Pan XQ; Goddard WA; Zhao ZP*; Huang Y*;
    ACS Energy Lett. 2020, 5, 3672–3680.
  2. Te-Doped Pd Nanocrystal for Electrochemical Urea Production by Efficiently Coupling Carbon Dioxide Reduction with Nitrite Reduction
    Feng YG#; Yang H#; Zhang Y; Huang XQ*; Li LG; Cheng T; Shao Q*;
    Nano Lett. 2020, 20, 8282–8289.
  3. Bismuth Oxyhydroxide-Pt Inverse Interface for Enhanced Methanol Electrooxidation Performance
    Wang XC#; Xie M#; Lyu FL*; Yiu YM; Wang ZQ; Chen JT; Chang LY; Xia YJ; Zhong QX; Chu MY; Yang H; Cheng T*; Sham TK*; Zhang Q*;
    Nano Lett. 2020, 20, 7751–7759.
  4. N-modulated Cu+ for efficient electrochemical carbon monoxide reduction to acetate
    Ni FL; Yang H; Wen YZ; Bai HP; Zhang LS; Cui CY; Li SY; He SS; Cheng T*; Zhang B*; Peng HS*;
    Sci. China Mater. 2020, 63, 2606–2612.
  5. Highly Selective Electrocatalytic Reduction of CO2 into Methane on Cu–Bi Nanoalloys
    Wang ZJ*; Yuan Q; Shan JJ; Jiang ZH; Xu P; Hu YF; Zhou JG; Wu LN; Niu ZZ; Sun JM*; Cheng T*; Goddard WA*;
    J. Phys. Chem. Lett. 2020, 11, 7261–7266.
  6. Highly Active and Stable Stepped Cu Surface for Enhanced Electrochemical CO2 Reduction to C2H4
    Choi C; Kwon S; Cheng T; Xu MJ; Tieu P; Lee C; Cai J; Lee HM; Pan XQ; Duan XF; Goddard WA*; Huang Y*;
    Nat. Catal. 2020, 3, 804–812.
  7. Surface engineering of RhOOH nanosheets promotes hydrogen evolution in alkaline
    Bai SX#; Xie M#; Cheng T*; Cao KL; Xu Y*; Huang XQ*;
    Nano Energy 2020, 78, 105224.
  8. Synergy between a Silver–Copper Surface Alloy Composition and Carbon Dioxide Adsorption and Activation
    Ye YF#; Qian J#; Yang H#; Su HY; Lee KJ; Etxebarria A; Cheng T; Xiao H; Yano J*; Goddard WA*; Crumlin EJ*;
    ACS Appl. Mater. Interfaces 2020, 12, 25374–25382.
  9. Atomistic Explanation of the Dramatically Improved Oxygen Reduction Reaction of Jagged Platinum Nanowires, 50 times better than Pt
    Chen YL; Cheng T; Goddard WA*;
    J. Am. Chem. Soc. 2020, 142, 8625-8632.
  10. A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction
    Zhang CC#; Yang H#; Zhong D#; Xu Y; Wang YZ; Yuan Q; Liang ZZ; Wang B; Zhang Wei; Zheng HQ*; Cheng T*; Cao R*;
    J. Mater. Chem. A, 2020, 8, 9536-9544.
  11. tert-Butyl substituted hetero-donor TADF compounds for efficient solution-processed non-doped blue OLEDs
    Xie FM#; An ZD#; Xie M; Li YQ*; Zhang GH; Zou SJ; Chen Li; Chen JD; Cheng T*; Tang JX*;
    J. Mater. Chem. C, 2020, 8, 5769-5776.
  12. Customizable Ligand Exchange for Tailored Surface Property of Noble Metal Nanocrystals
    Fan QK#; Yang H#; Ge J; Zhang SM; Liu ZJ; Lei B; Cheng T; Li YY; Yin YD; Gao CB*;
    Research 2020, 2020, 2131806.
  13. High-Performance Nondoped Blue Delayed Fluorescence Organic Light-Emitting Diodes Featuring Low Driving Voltage and High Brightness
    Zou SJ#; Xie FM#; Xie M#; Li YQ*; Cheng T; Zhang XH; Lee CS*; Tang JX*;
    Adv. Sci. 2020, 7, 1902508.
  14. Efficient Orange–Red Delayed Fluorescence Organic Light‐Emitting Diodes with External Quantum Efficiency over 26%
    Xie FM; Wu P; Zou SJ; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;
    Adv. Electron. Mater. 2020, 6, 1900843.

Back to top

2019

  1. Design of a One-Dimensional Stacked Spin Peierls System with Room-Temperature Switching from Quantum Mechanical Predictions
    Yang H; Cheng T*; Goddard WA*; Ren XM*;
    J. Phys. Chem. Lett. 2019, 10, 6432-6437.
  2. Weakening Hydrogen Adsorption on Nickel via Interstitial Nitrogen Doping Promotes Bifunctional Hydrogen Electrocatalysis in Alkaline Solution
    Wang TT#; Wang M#; Yang H#; Xu MQ; Zuo GD; Feng K; Xie M; Deng J; Zhong J; Zhou W; Cheng T*; Li YG*;
    Energy Environ. Sci. 2019, 12, 3522-3529.
  3. Rational Molecular Design of Dibenzo[a,c]phenazine-based Thermally Activated Delayed Fluorescence Emitters for Orange-Red OLEDs with EQE up to 22.0%
    Xie FM; Li HZ; Dai GL; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;
    ACS Appl. Mater. Interfaces 2019, 11, 26144-26151.
  4. Identifying Active Sites for CO2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations
    Chen YL; Huang YF; Cheng T; Goddard WA*;
    J. Am. Chem. Soc. 2019, 141, 11651-11657.
  5. Formation of Carbon-Nitrogen Bonds in Carbon Monoxide Electrolysis
    Jouny M#; Lv JJ#; Cheng T#; Ko BH; Zhu JJ; Goddard WA*; Jiao F*;
    Nat. Chem. 2019, 11, 846-851.
    (Jouny M, Lv JJ, and Cheng T contributed equally)
  6. Benzo-Fused Periacenes or Double Helicenes? Different Cy-clodehydrogenation Pathways on Surface and in Solution
    Zhong QG#; Hu YB#; Niu KF; Zhang HM; Yang B; Daniel E; Jalmar T; Cheng T; Andre S; Akimitsu N*; Klaus M*; Chi LF*;
    J. Am. Chem. Soc. 2019, 141, 7399-7406.
  7. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis
    Li MF#; Duanmu KN#; Wan CZ#; Cheng T#; Zhang L; Dai S; Chen WX; Zhao ZP; Li P; Fei HL; Zhu YM; Yu R; Luo J; Zang KT; Lin ZY; Ding MN; Huang J; Sun HT; Guo JH; Pan XQ; Goddard WA; Sautet P*; Huang Y*; Duan XF*;
    Nat. Catal. 2019, 2, 495–503.
    (Li MF, Duanmu KN, Wan CZ and Cheng T contributed equally)
  8. Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces
    Buckley AK; Lee M; Cheng T; Kazantsev RV; Larson DM; Goddard WA; Tostel FD*; Toma FM*;
    J. Am. Chem. Soc 2019, 141, 7355–7364.
  9. Dramatic Differences in Carbon Dioxide Adsorption and Initial Steps of Reduction Between Silver and Copper
    Ye YF#; Yang H#; Qian J#; Su HY; Lee KJ; Cheng T; Xiao H; Yano J*; Goddard WA*; Crumlin EJ*;
    Nat. Commun. 2019, 10, 1875.
  10. Reaction Intermediates During Operando Electrocatalysis Identified from Full Solvent Quantum Mechanics Molecular Dynamics
    Cheng T; Fortunelli A; Goddard WA*;
    Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 7718-7722.
  11. Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State
    Nalluri SKM; Zhou JW; Cheng T; Liu ZC; Nguyen MT; Chen TY; Patel HA; Krzyaniak MD; Goddard WA; Wasielewski MR*; Stoddart JF*;
    J. Am. Chem. Soc. 2019, 141, 1290–1303.
  12. A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials
    Choi C; Cheng T; Expinosa MF; Fei HL; Duan XF; Goddard WA; Huang Y*;
    Adv. Mater. 2019, 31, 1805405.
  13. First-principles–based reaction kinetics from reactive molecular dynamics simulations: Application to hydrogen peroxide decomposition
    Ilyin DV; Goddard WA*; Oppenheim JJ; Cheng T;
    Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18202-18208.
  14. First principles-based multiscale atomistic methods for input into first principles nonequilibrium transport across interfaces
    Cheng T; Jaramillo-Botero A; An Q; Ilyin DV; Naserifar S; Goddard WA*;
    Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18193-18201.

Back to top

2018

  1. Identification of the Selective Sites for Electrochemical Reduction of CO to C2+ Products on Copper Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and Machine Learning
    Huang YF; Chen YL; Cheng T; Wang LW; Goddard WA*;
    ACS Energy Lett. 2018, 3, 2983–2988.
  2. Molecular Russian Dolls
    Cai K; Lipke MC; Liu ZC; Nelson J; Cheng T; Shi Y; Cheng CY; Shen DK; Han JM; Vemuri S; Feng YN; Stern CL; Goddard WA; Wasielewski MR; Stoddart JF*;
    Nat. Commun. 2018, 9, 5275.
  3. Neighboring Component Effect in a Tri-stable [2]Rotaxane
    Wang YP; Cheng T; Sun JL; Liu ZC; Frasconi M; Goddard WA; Stoddart JF*;
    J. Am. Chem. Soc. 2018, 140, 13827–13834.
  4. In silico Optimization of Organic-inorganic Hybrid Perovskites for Photocatalytic Hydrogen Evolution Reaction in Acidic Solution
    Wang L; Goddard WA*; Cheng T; Xiao H; Li YY*;
    J. Phys. Chem. C 2018, 122, 20918-20922.
  5. Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products
    Lum YW#; Cheng T#; Goddard WA*; Ager JW*;
    J. Am. Chem. Soc. 2018, 140, 9337-9340.
    (Lum YW and Cheng T contributed equally)
  6. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH.
    Cheng T; Wang L; Merinov BV; Goddard WA*;
    J. Am. Chem. Soc. 2018, 140, 7787-7790.
    (J. Am. Chem. Soc. Spotlights)
  7. Surface Ligand Promotion of Carbon Dioxide Reduction through Stabilizing Chemisorbed Reactive Intermediates
    Wang ZJ*; Wu LN; Sun K; Chen T; Jiang ZH; Cheng T*; Goddard WA*;
    J. Phys. Chem. Lett. 2018, 9, 3057-3061.
  8. Ordered Three-fold Symmetric Graphene Oxide/Buckled Graphene/Graphene Heterostructures on MgO (111) by Carbon Molecular Beam Epitaxy
    Ladewig C#; Cheng T#; Randle MD; Bird J; Olanipekun O; Dowben PA; Kelber J*; Goddard WA*;
    J. Mater. Chem. C 2018, 6, 4225-4233.
    (Ladewig C and Cheng T contributed equally)
  9. Reaction mechanisms and sensitivity of silicon nitrocarbamate and related systems from quantum mechanics reaction dynamics
    Zhou TT; Cheng T; Zybin SV; Goddard WA*; Huang FL;
    J. Mater. Chem. A 2018, 6, 5082-5097.
    (2018 Journal of Materials Chemistry A HOT Papers)
  10. Pb-Activated Amine-Assisted Photocatalytic Hydrogen Evolution Reaction on Organic–Inorganic Perovskites
    Wang L*; Xiao H; Cheng T; Li YY*; Goddard WA*;
    J. Am. Chem. Soc. 2018, 140, 1994–1997.
    (J. Am. Chem. Soc. Cover Publication)
  11. Predicted Detonation Properties at the Chapman-Jouguet State for Proposed Energetic Materials (MTO and MTO3N) from Combined ReaxFF and Quantum Mechanics Reactive Dynamics
    Zhou TT; Zybin SV; Goddard WA*; Cheng T; Naserifar S; Jaramillo-Botero A; Huang FL;
    Phys. Chem. Chem. Phys. 2018, 20, 3953-3969.

Back to top

2017

  1. Bulk Properties of Amorphous Lithium Dendrites
    Aryanfar A*; Cheng T; Goddard WA;
    ECS Trans. 2017, 80, 365-370.
  2. Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold-iron Core-shell Nanoparticles
    Sun K#; Cheng T#; Wu LN; Hu YF; Zhou JG; Maclennan A; Jiang ZH; Gao YZ; Goddard WA*; Wang ZJ*;
    J. Am. Chem. Soc. 2017, 139, 15608–15611.
    (Sun K and Cheng T contributed equally)
    (J. Am. Chem. Soc. Cover Publication)
  3. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance
    Cheng T; Xiao H; Goddard WA*;
    J. Am. Chem. Soc. 2017, 139, 11642-11645.
  4. Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles
    Cheng T; Huang YF; Xiao H; Goddard WA*;
    J. Phys. Chem. Lett. 2017, 8, 3317-3320.
  5. Quantum Mechanics Reactive Dynamics Study of Solid Li-Electrode/Li6PS5Cl-Electrolyte Interface
    Cheng T; Merinov BV*; Morozov S; Goddard WA;
    ACS Energy Lett. 2017, 2, 1454-1459.
  6. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects
    Hajilar S; Shafei B*; Cheng T; Jaramillo-Botero A*;
    J. Phys. Chem. A 2017, 121, 4688-4697.
  7. Epitaxial Growth of Cobalt Oxide Phases on Ru(0001) for Spintronic Device Applications
    Olanipekun O; Ladewig C; Kelber JA*; Randle MD; Nathawat J; Kwan CP; Bird JP; Chakraborti P; Dowben PA; Cheng T; Goddard WA;
    Semicond. Sci. Technol. 2017, 32, 095011.
  8. The Cu Metal Embedded in Oxidized Matrix Catalyst to Promote CO2 Activation and CO Dimerization for Efficient and Selective Electrochemical Reduction of CO2
    Xiao H; Goddard WA*; Cheng T; Liu YY;
    Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6685-6688.
  9. Subsurface Oxide Plays a Critical Role in CO2 Activation by Copper (111) Surfaces to Form Chemisorbed CO2, the First Step in Reduction of CO2
    Favaro M#; Xiao H#; Cheng T; Goddard WA*; Yano J*; Crumlin EJ*;
    Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6706-6711.
  10. Intramolecular Energy and Electron Transfer Within a Diazaperopyrenium-Based Cyclophane
    Gong XR#; Young RM#; Hartlieb KJ; Miller C; Wu YL; Xiao H; Li P; Hafezi N; Zhou JW; Ma L; Cheng T; Goddard WA; Farha OK; Hupp JT; Wasielewski MR*; Stoddart JF*;
    J. Am. Chem. Soc. 2017, 139, 4107-4116.
  11. Size-Matched Radical Multivalency
    Lipke MC; Cheng T; Wu YL; Arslan H; Xiao H; Wasielewski MR; Goddard WA; Stoddart JF*;
    J. Am. Chem. Soc. 2017, 139, 3986-3998.
  12. Full Atomistic Reaction Mechanism with Kinetics for CO Reduction on Cu(100) from ab initio Molecular Dynamics Free-energy Calculations at 298 K.
    Cheng T; Xiao H; Goddard WA*;
    Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1795-1800.
    (direct submission)
  13. Mechanism and Kinetics of the Electrocatalytic Reaction Responsible for the High Cost of Hydrogen Fuel Cells
    Cheng T; Goddard WA*; An Q; Xiao H; Merinov B; Morozov S;
    Phys. Chem. Chem. Phys. 2017, 19, 2666-2673.
    (2017 PCCP HOT Articles)
  14. Atomistic Mechanisms Underlying Selectivities in C1 and C2 Products from Electrochemical Reduction of CO on Cu(111)
    Xiao H; Cheng T; Goddard WA*;
    J. Am. Chem. Soc. 2017, 139, 130-136.
  15. Nucleation of Graphene Layers On Magnetic Oxides: Co3O4 (111) and Cr2O3 (0001) from Theory and Experiment
    Beatty J#; Cheng T#; Cao Y; Driver M; Goddard WA*; Kelber JA*;
    J. Phys. Chem. Lett. 2017, 8, 188-192.
    (Beatty J and Cheng T contributed equally)

Back to top

2016

  1. Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction
    Li MF; Zhao ZP; Cheng T; Fortunelli A; Chen CY; Yu R; Zhang QH; Gu L; Merinov BV; Lin ZY; Zhu EB; Yu T; Jia QY; Guo JH; Zhang L; Goddard WA*; Huang Y*; Duan XF*;
    Science 2016, 354, 1414-1419.
  2. Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water
    Cheng T; Xiao H; Goddard WA*;
    J. Am. Chem. Soc. 2016, 138, 13802-13805.
    (Reported by "JCAP highlight" with linkage below)
  3. Influence of Constitution and Charge on Radical Pairing Interactions in Tris-radical Tricationic Complexes
    Cheng CY; Cheng T; Xiao H; Krzyaniak MD; Wang YP; McGonigal PR; Frasconi M; Barnes JC; Fahrenbach AC; Wasielewski MR; Goddard WA; Stoddart JF*;
    J. Am. Chem. Soc. 2016, 138, 8288-8300.
  4. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu(111)
    Xiao H; Cheng T; Goddard WA*; Sundararaman R;
    J. Am. Chem. Soc. 2016, 138, 483-486.

Back to top

2015

  1. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0
    Cheng T; Xiao H; Goddard WA*;
    J. Phys. Chem. Lett. 2015, 6, 4767-4773.
  2. Annealing Kinetics of Electrodeposited Lithium Dendrites
    Aryanfar A*; Cheng T; Colussi AJ; Merinov BV; Goddard WA; Hoffmann MR;
    J. Chem. Phys. 2015, 143, 134701.
    (reported by AIP publishing "Extending a Battery's Lifetime with Heat")
  3. Rescaling of Metal Oxide Nanocrystals for Energy Storage Having High Capacitance and Energy Density with Robust Cycle Life
    Jeong HM; Choi KM; Cheng T; Lee DK; Zhou RJ; Ock IW; Milliron DJ; Goddard WA*; Kang JK*;
    Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 7914-7919.
  4. Initial Decomposition Reactions of Bicyclo-HMX [BCHMX or cis-1,3,4,6 Tetranitrooctahydroimidazo-[4,5-d]imidazole] from Quantum Molecular Dynamics Simulations
    Ye CC; An Q; Goddard WA*; Cheng T; Zybin SV; Ju XH;
    J. Phys. Chem. C 2015, 119, 2290-2296.
  5. Anisotropic Impact Sensitivity and Shock Induced Plasticity of TKX-50 (Dihydroxylammonium 5,5′-bis(tetrazole)-1,1′-diolate) Single Crystals: From Large-Scale Molecular Dynamics Simulations
    An Q#; Cheng T#; Goddard WA*; Zybin SV;
    J. Phys. Chem. C 2015, 119, 2196-2207.
    (An Q and Cheng T contributed equally)
  6. Reaction Mechanism from Quantum Molecular Dynamics for the Initial Thermal Decomposition of 2, 4, 6-triamino-1, 3, 5-triazine-1, 3, 5-trioxide (MTO) and 2, 4, 6-trinitro-1, 3, 5-triazine-1, 3, 5-trioxide (MTO3N), Promising Green Energetic Materials
    Ye CC; An Q; Cheng T; Zybin SV; Naserifar S; Ju XH; Goddard WA*;
    J. Mater. Chem. A 2015, 3, 12044-12050.
  7. Initial Decomposition Reaction of Di-tetrazine-tetroxide (Dtto) from Quantum Molecular Dynamics: Implications for a Promising Energetic Material
    Ye CC; An Q; Goddard WA*; Cheng T; Liu WG; Zybin SV; Ju XH;
    J. Mater. Chem. A 2015, 3, 1972-1978.

Back to top

2014

  1. Initial Steps of Thermal Decomposition of Dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate Crystals from Quantum Mechanics
    An Q#; Liu WG#; Goddard WA*; Cheng T; Zybin SV; Xiao H;
    J Phys. Chem. C 2014, 118, 27175-27181.
  2. Atomistic Explanation of Shear-Induced Amorphous Band Formation in Boron Carbide
    An Q; Goddard WA*; Cheng T;
    Phys. Rev. Lett. 2014, 113, 095501.
  3. Deformation Induced Solid–Solid Phase Transitions in Gamma Boron
    An Q; Goddard WA*; Xiao H; Cheng T;
    Chem. Mater. 2014, 26, 4289-4298.
  4. Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion
    Cheng T; Jaramillo-Botero A*; Goddard WA*; Sun H*;
    J. Am. Chem. Soc. 2014, 136, 9434-9442.

Back to top

before 2014

  1. Adsorption of Ethanol Vapor on Mica Surface under Different Relative Humidities: A Molecular Simulation Study
    Cheng T; Sun H*;
    J. Phys. Chem. C 2012, 116, 16436-16446.
  2. Prediction of the Mutual Solubility of Water and Dipropylene Glycol Dimethyl Ether Using Molecular Dynamics Simulation
    Cheng T; Li F; Dai JX; Sun H*;
    Fluid Phase Equilibria. 2012, 314, 1-6.
  3. Molecular Engineering of Microporous Crystals: (Iv) Crystallization Process of Microporous Aluminophosphate Alpo4-11
    Cheng T#; Xu J#; Li X; Li Y; Zhang B; Yan WF*; Yu JH; Sun H; Deng F; Xu RR*;
    Micropor. Mesopor. Mater. 2012, 152, 190-207.
  4. Classic Force Field for Predicting Surface Tension and Interfacial Properties of Sodium Dodecyl Sulfate
    Cheng T; Chen Q; Li F; Sun H*;
    J. Phys. Chem. B 2010, 114, 13736-13744.
  5. On the Accuracy of Predicting Shear Viscosity of Molecular Liquids Using the Periodic Perturbation Method
    Zhao LF; Cheng T; Sun H*;
    J. Chem. Phys. 2008, 129, 144501.
  6. One Force Field for Predicting Multiple Thermodynamic Properties of Liquid and Vapor Ethylene Oxide
    Li XF; Zhao LF; Cheng T; Liu LC; Sun H*;
    Fluid Phase Equilib. 2008, 274, 36-43.

Back to top